Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int J Nanomedicine ; 19: 2675-2690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505168

RESUMO

Purpose: 5-fluorouracil (5-FU) is a first-line chemotherapeutic agent used to treat colorectal cancer (CRC). However, 5-FU induces drug resistance and activation of cancer stem cells (CSCs). In the present study, we designed a novel biocompatible nanomedicine system with high efficacy and biocompatibility by synthesizing mesoporous silica nanoparticle (MSN)-structured ZnO and gold ions. Oleuropein (OLP) is a phenolic compound derived from olive leaves that exerts anti-cancer effects. Therefore, we synthesized OLP-loaded ZnO/Au MSNs (ZnO/Au/OLP MSNs) and examined their anti-cancer effects on 5-FU-resistant CRC cells. Methods: ZnO/Au MSNs were synthesized and functionalized, and their physical and chemical compositions were characterized using UV-visible spectroscopy, dynamic light scattering, and transmission electron microscopy (TEM). Their effects were assessed in terms of cellular proliferation capacity, migration and invasion ability, colony-forming ability, spheroid-forming ability, reactive oxygen species (ROS) production, and mitochondrial membrane depolarization. Results: ZnO/Au MSNs were mostly composed of various ions containing ZnO and gold ions, had a spheroid phenotype, and exhibited no cytotoxicity. ZnO/Au/OLP MSNs reduced cell viability and CSC formation and induced apoptosis of 5-FU-resistant CRC cells via necrosis via ROS accumulation and DNA fragmentation. Conclusion: ZnO/Au/OLP MSNs exhibited anti-cancer activity by upregulating necrosis. These results revealed that ZnO/Au/OLP MSNs are a novel drug delivery system for 5-FU CRC therapy.


Assuntos
Neoplasias Colorretais , Glucosídeos Iridoides , Nanopartículas , Óxido de Zinco , Humanos , Dióxido de Silício/química , Espécies Reativas de Oxigênio , Nanopartículas/química , Fluoruracila/farmacologia , Necrose , Ouro/química , Íons , Neoplasias Colorretais/tratamento farmacológico , Porosidade
3.
Biosens Bioelectron ; 246: 115838, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38042052

RESUMO

Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.


Assuntos
Técnicas Biossensoriais , Nariz Eletrônico , Humanos , Células Endoteliais , Diferenciação Celular , Células-Tronco
5.
J Funct Biomater ; 14(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888162

RESUMO

Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.

6.
Stem Cell Res Ther ; 14(1): 193, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533021

RESUMO

BACKGROUND: Peripheral artery disease is an ischemic vascular disease caused by the blockage of blood vessels supplying blood to the lower extremities. Mesenchymal stem cells (MSCs) and endothelial colony-forming cells (ECFCs) have been reported to alleviate peripheral artery disease by forming new blood vessels. However, the clinical application of MSCs and ECFCs has been impeded by their poor in vivo engraftment after cell transplantation. To augment in vivo engraftment of transplanted MSCs and ECFCs, we investigated the effects of hybrid cell spheroids, which mimic a tissue-like environment, on the therapeutic efficacy and survival of transplanted cells. METHODS: The in vivo survival and angiogenic activities of the spheroids or cell suspension composed of MSCs and ECFCs were measured in a murine hindlimb ischemia model and Matrigel plug assay. In the hindlimb ischemia model, the hybrid spheroids showed enhanced therapeutic effects compared with the control groups, such as adherent cultured cells or spheroids containing either MSCs or ECFCs. RESULTS: Spheroids from MSCs, but not from ECFCs, exhibited prolonged in vivo survival compared with adherent cultured cells, whereas hybrid spheroids composed of MSCs and ECFCs substantially increased the survival of ECFCs. Moreover, single spheroids of either MSCs or ECFCs secreted greater levels of pro-angiogenic factors than adherent cultured cells, and the hybrid spheroids of MSCs and ECFCs promoted the secretion of several pro-angiogenic factors, such as angiopoietin-2 and platelet-derived growth factor. CONCLUSION: These results suggest that hybrid spheroids containing MSCs can serve as carriers for cell transplantation of ECFCs which have poor in vivo engraftment efficiency.


Assuntos
Células-Tronco Mesenquimais , Doença Arterial Periférica , Humanos , Animais , Camundongos , Neovascularização Fisiológica , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Isquemia/terapia , Isquemia/metabolismo
7.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566085

RESUMO

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as ß-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.


Assuntos
Células Progenitoras Endoteliais , Espécies Reativas de Oxigênio/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo
8.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569446

RESUMO

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

9.
Adv Healthc Mater ; 12(26): e2300845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449876

RESUMO

Diabetes and its complications affect the younger population and are associated with a high mortality rate; however, early diagnosis can contribute to the selection of appropriate treatment regimens that can reduce mortality. Although diabetes diagnosis via exhaled breath has great potential for early diagnosis, research on such diagnosis is restricted to disease detection, requiring in-depth examination to diagnose and classify diseases and their complications. This study demonstrates the use of an artificial neural processing-based bioelectronic nose to accurately diagnose diabetes and classify diabetic types (type I and II) and their complications, such as heart disease. Specifically, an M13 phage-based electronic nose (e-nose) is used to explore the features of subjects with diabetes at various levels of cellular and organismal organization (cells, liver organoids, and mice). Exhaled breath samples are collected during culturing and exposed to the phage-based e-nose. Compared with cells, liver organoids cultured under conditions mimicking a diabetic environment display properties that closely resemble the characteristics of diabetic mice. Using neural pattern separation, the M13 phage-based e-nose achieves a classification success rate of over 86% for four conditions in mice, namely, type 1 diabetes, type 2 diabetes, diabetic cardiomyopathy, and cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Animais , Camundongos , Diabetes Mellitus Experimental/diagnóstico , Testes Respiratórios , Expiração , Nariz Eletrônico
10.
Biomater Res ; 26(1): 73, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471437

RESUMO

Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.

13.
Transl Cancer Res ; 11(2): 316-326, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35281415

RESUMO

Background: To identify immunotherapy biomarkers, we examined granzyme B levels in peripheral blood PD-1+ CD8+ T cells and their relationship with treatment outcomes in patients with non-small cell lung cancer (NSCLC). Methods: To evaluate the association of granzyme B with response to immunotherapy, we tested blood samples obtained from 16 patients with stage IIIC to IV NSCLC receiving immune-checkpoint inhibitor treatment. We used flow cytometry to measure the change in the percentage of PD1+ CD8+ T cells expressing granzyme B before (t0) and after (t1) immunotherapy, and we evaluated for an association with tumor response to therapy, progression-free survival (PFS) and overall survival (OS). Additionally, we measured immune markers correlated with immunotherapy response by enzyme-linked immunosorbent assay. Results: We found that the sequential change of granzyme B+ T cells after immunotherapy (t1/t0) significantly predicted durable clinical benefit (DCB) compared to no clinical benefit (NCB) (P=0.048), and prolonged PFS (P=0.025). Patients who demonstrated a PD-L1 tumor proportion score (TPS) >50% showed NCB if patients had low granzyme B t1/t0 levels (<0.805). Additionally, all patients with 1% PD-L1 TPS (or higher) and high granzyme B t1/t0 (≥0.805) showed DCB. Therefore, granzyme B t1/t0 may be an adjunctive marker with available PD-L1 TPS. Conclusions: Our findings revealed that sequential change in granzyme B might be utilized as a predictive biomarker of immune checkpoint inhibitor monotherapy.

14.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055132

RESUMO

Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.


Assuntos
Mucoproteínas/metabolismo , Nitrilas/administração & dosagem , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Pirimidinas/administração & dosagem , Inibidores da Transcriptase Reversa/administração & dosagem , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mucoproteínas/genética , Metástase Neoplásica , Nitrilas/farmacologia , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Proteólise , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nutrients ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959830

RESUMO

Women and men share similar diseases; however, women have unique issues, including gynecologic diseases and diseases related to menstruation, menopause, and post menopause. In recent decades, scientists paid more attention to natural products and their derivatives because of their good tolerability and effectiveness in disease prevention and treatment. Olive oil is an essential component in the Mediterranean diet, a diet well known for its protective impact on human well-being. Investigation of the active components in olive oil, such as oleuropein and hydroxytyrosol, showed positive effects in various diseases. Their effects have been clarified in many suggested mechanisms and have shown promising results in animal and human studies, especially in breast cancer, ovarian cancer, postmenopausal osteoporosis, and other disorders. This review summarizes the current evidence of the role of olives and olive polyphenols in women's health issues and their potential implications in the treatment and prevention of health problems in women.


Assuntos
Dieta Saudável/métodos , Olea/química , Azeite de Oliva/farmacologia , Substâncias Protetoras/farmacologia , Saúde da Mulher , Animais , Dieta Mediterrânea , Feminino , Humanos , Glucosídeos Iridoides/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Óleos de Plantas/farmacologia , Polifenóis/farmacologia
17.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34584195

RESUMO

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Assuntos
Autofagia , Diferenciação Celular , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Fibrose , Humanos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Serina-Treonina Quinases TOR/metabolismo
18.
Biosens Bioelectron ; 194: 113567, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481239

RESUMO

There is a growing interest in electronic nose-based diagnostic systems that are fast and portable. However, existing technologies are suitable only for operation in the laboratory, making them difficult to apply in a rapid, non-face-to-face, and field-suitable manner. Here, we demonstrate a DNA-derived phage nose (D2pNose) as a portable respiratory disease diagnosis system requiring no pretreatment. D2pNose was produced based on phage colour films implanted with DNA sequences from mammalian olfactory receptor cells, and as a result, it possesses the comprehensive reactivity of these cells. The manipulated surface chemistry of the genetically engineered phages was verified through a correlation analysis between the calculated and the experimentally measured reactivity. Breaths from 31 healthy subjects and 31 lung cancer patients were collected and exposed to D2pNose without pretreatment. With the help of deep learning and neural pattern separation, D2pNose has achieved a diagnostic success rate of over 75% and a classification success rate of over 86% for lung cancer based on raw human breath. Based on these results, D2pNose can be expected to be directly applicable to other respiratory diseases.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Neoplasias Pulmonares , Bacteriófagos/genética , DNA , Humanos , Neoplasias Pulmonares/diagnóstico , Aprendizado de Máquina
19.
Korean J Physiol Pharmacol ; 25(5): 459-466, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448463

RESUMO

Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

20.
Biofabrication ; 13(4)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34433153

RESUMO

Intercellular interaction is the most crucial factor in promoting cell viability and functionality in an engineered tissue system. Of the various shapes available for cell-laden constructs, spheroidal multicellular microarchitectures (SMMs) have been introduced as building blocks and injectable cell carriers with substantial cell-cell and cell-extracellular matrix (ECM) interactions. Here, we developed a precise and expeditious SMM printing method that can create a tissue-specific microenvironment and thus be potentially useful for cell therapy. This printing strategy is designed to manufacture SMMs fabricated with optimal bioink blended with decellularized ECM and alginate to enhance the functional performance of the encapsulated cells. Experimental results showed that the proposed method allowed for size controllability and mass production of SMMs with high cell viability. Moreover, SMMs co-cultured with endothelial cells promoted lineage-specific maturation and increased functionality compared to monocultured SMMs. Overall, it was concluded that SMMs have the potential for use in cell therapy due to their high cell retention and proliferation rate compared to single-cell injection, particularly for efficient tissue regeneration after myocardial infarction. This study suggests that utilizing microextrusion-based 3D bioprinting technology to encapsulate cells in cell-niche-standardized SMMs can expand the range of possible applications.


Assuntos
Bioimpressão , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...